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1 Motivation

Diffusive processes are part of our everyday lives. When we add a dash of milk
to a cup of tea or coffee, the process by which the milk mixes with the dark
liquid is diffusive. It happens slowly, reducing the milk’s density from an initially
localised drop to a homogeneous mixture. This passive process is driven by the
inherent kinetic energy of the system and the random motion of particles down
a concentration gradient.

Diffusion is an important transport mechanism. It is the same mechanism
by which an ideal gas fills an empty room, and it is particularly important in
biology. First, it does not require extra energy to be added to the system.
Second, cells depend on diffusive processes to transport various molecules such
as glucose, oxygen (e.g., gas exchange in the lungs) and ions, relaying cellular
processes and facilitating the mixing of reactants in chemical reactions. Plants,
for example, absorb water and nutrients from the soil through diffusion. Heat
transfer also occurs through diffusion.

Mathematically, diffusion is very simple to describe and appears naturally
everywhere, as we will see in the upcoming sections. Before we get our hands
dirty, here is a quick outline of this lecture: first, we are going to derive the
diffusion equation from random walks. Then, we will see methods to solve the
Diffusion Equation. Finally, we are going to look at applications of diffusive
processes to understand its properties. This will lead to Lecture 2, where we
will study pattern formation.

2 Random Walks

Random walks are the simplest models for diffusive processes. You can get a
lot of insight about diffusion from a simple random walk example.

Example 1: Drunken-sailor
Imagine a pub by the edge of a cliff. Drunken sailors leave the pub planning

to walk home, but their walk is erratic: they take a step to the right with
probability q, and left with probability 1 − q. Each step is independent of the
previous—a property we call Markovian or memoryless.

If the pub is one step away to the right of the cliff (it takes one step left from
the pub to fall off), what is the probability that the sailor arrives home safe?

Sol.: Define the position of the cliff as x = 0, the pub is at x = 1. Let
Pcliff(x) be the probability that the sailor walks off the cliff at some time in the
future starting at position x. We want to know the value of 1− Pcliff(1).

From x = 1, the sailor can take a step either left or right,

Pcliff(1) = (1− q)︸ ︷︷ ︸
1st step left

+ q · Pcliff(2)︸ ︷︷ ︸
1st step right

.

What is Pcliff(2)? It is the probability that the sailor eventually walks from
x = 2 to x = 1 and subsequently moves from x = 1 to x = 0. Since each step
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is independent, by translation symmetry, the probability of eventually walking
from x = 2 to x = 1 is the same as the probability of eventually walking from
x = 1 to x = 0 (total displacement 1 step to the left). Hence,

Pcliff(1) = (1− q) + q · Pcliff(1) · Pcliff(1).

This is a quadratic equation with solutions

Pcliff(1) = 1 or Pcliff(1) =
1− q

q
.

When q = 0, Pcliff(1) = 1 as the sailor immediately steps left, off the cliff.
When q = 1, Pcliff(1) = 0, as the sailor only walks away from the cliff. For
q = 1

2 , the two solutions intersect. Thus, the solution is,

Pcliff(1) =

{
1, if q ≤ 1

2 ,
1−q
q , if q > 1

2 .

And the probability that the sailor gets home safe is

1− Pcliff(1) =

{
0, if q ≤ 1

2 ,
2q−1

q , if q > 1
2 .

(1)

This example, however simple, holds parallels with more interesting problems,
such as the removal probability of a gas molecule through a semipermeable
membrane in a cell.

2.1 Random walk definition

The drunken sailor problem is an example of a more general class of processes
called random walks which are closely connected to transport phenomena, in
particular, diffusion, as we will see later.

Definition: Random Walk
Consider a sequence of independent and identically distributed (i.i.d) random

variables, ∆1, ∆2, . . . , each representing a step in Rd. Setting the starting point
X0 = z (for some vector z ∈ Rd), the position after n steps is given by

Xn = X0 +

n∑
i=1

∆i,

or recursively, Xn = Xn−1 +∆n.

The drunken sailor is an example of a random walk with P(∆i = 1) = q,
P(∆i = −1) = 1−q, and X0 = 1. In the drunken sailor problem, we also defined
an absorbing boundary condition at x = 0.

Exercise 1: Consider a random walk such that P(∆i = 1) = q, P(∆i =
−1) = 1 − q on R. Find P (x, t | y, s), the probability that a particle reaches
position x at step t given it was at position y at step s.
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Sol.: The particle must take n = t − s steps in total. Additionally, n =
nR + nL as each step is either right or left. The total rightwards displacement
required is then x− y = nR − nL. Hence,

nL = nR − x+ y,

nR = n− nL = t− s+ x− y − nR,

nR =
1

2
(t− s+ x− y) .

This is now just a combinatorial problem. Out of n steps, what is the
probability that the particle performs nR right steps?

P (x, t | y, s) = P [nR right steps out of n],

=

(
n
nR

)
qnR(1− q)n−nR .

If the particle starts at x0 = 0, the probability of finding the particle at
position x at time t is

P (x, t) =

(
t

t+x
2

)
q

t+x
2 (1− q)

t−x
2 .

Note that t + x must be even! If t + x is odd, then P (x, t) = 0. The reason
is that each step reverses the parity of the position of the particle, such that
it reaches even positions at even steps and odd positions at odd steps. Thus,
the sum of position and step number must be even for any valid path of the
particle.

Exercise 2: Find the probability that the sailor survives N steps.
Hint: Find the probability that the sailor reaches the cliff exactly at step t

using the Method of Images.

3 Random Walks and Diffusion

The symmetric discrete random walk has the probability of stepping left or right
equal to 1

2 . Each step has size δ and the interval between each step is τ . The
position of a particle starting at x = 0 after n steps is

X(n) =

n∑
i=1

∆i, where ∆i =

{
+δ, w/ prob. 12 ,

−δ, w/ prob. 12 .

3.1 Mean displacement

Suppose we have a group of N identical particles, all starting at the same time
from x = 0. What is the average position of the group?
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Definition: Ensemble average
If Y is a property of a particle, the ensemble mean of Y is defined as

⟨Y ⟩ = 1

N

N∑
i=1

yi,

where yi is the value of property Y of the i-th particle.

For Y the position of the particle, we get

⟨xi(n)⟩ =
n∑

i=1

⟨∆i⟩ =
n∑

i=1

δ · P(∆i = δ)︸ ︷︷ ︸
1
2

+(−δ) · P(∆i = −δ)︸ ︷︷ ︸
1
2

 = 0.

On average, the particle is “going nowhere”! This reflects the fact that the
particle has no preferred direction of movement. It does not mean that the
particle is not moving!

Similarly, for the ensemble average,

⟨X(n)⟩ = 1

N

N∑
i=1

⟨xi(n)⟩ = 0.

This means that, while the particles might be distancing themselves from the
origin, the average position of the centre of mass does not.

3.2 Mean squared displacement

We can now evaluate the particle’s mean squared displacement, which gives an
idea of how spread out its trajectory becomes. This is similar to the particle’s
variance in position.

⟨x2(n)⟩ =

〈
n∑

i=1

∆i

n∑
j=1

∆j

〉
,

=

〈
n∑

i=1

∆2
i +

n∑
i=1

n∑
j ̸=i

∆i∆j

〉
,

=

n∑
i=1

⟨∆2
i ⟩+

n∑
i=1

n∑
j ̸=i

⟨∆i∆j⟩ ,

= n
{
δ2 · P(∆i = δ) + δ2 · P(∆i = −δ)

}
+

n∑
i=1

n∑
j ̸=i

⟨∆i∆j⟩ ,

= nδ2 + 0,

where we used the independency of the steps to decouple ⟨∆i∆j⟩ = ⟨∆i⟩⟨∆j⟩.
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By writing n = t/τ , we now have the mean squared displacement
(MSD)

⟨∆x2⟩ = δ2

τ
t,

and the root mean squared displacement (RMSD),

√
⟨∆x2⟩ =

√
δ2

τ
t.

That is, the displacement of the particles (or the spread of the ensemble) is
proportional to

√
t, meaning that, as time passes, the ensemble becomes more

spread out. This is a key property of diffusion processes.

4 Fick’s Laws (of diffusion)

4.1 Fick’s first law

Let N(x) be the number of particles at position x. Consider a line at x + δ
2 .

The flux of particles through the line in an interval τ is

J(x)τ =
1

2
N(x)− 1

2
N(x+ δ),

where the first term comes from particles at x going right and the second comes
from particles at x+ δ going left.

Define n(x) = N(x)
δ to be a particle density. Multiplying the previous equa-

tion by δ/δ, we can write it as

J(x) = − δ2

2τ

(
n(x+ δ)− n(x)

δ

)
.

Now we take the limits δ, τ → 0 such that the ratio δ2

2τ → D, constant. Then

J(x) = −D
∂n

∂x
. (Fick’s first law)

The constant D is called the diffusion constant.
Recalling our expression for the mean square displacement, we can write

⟨∆x2⟩ = 2dDt,

where d is the number of dimensions of the random walk.

4.2 Fick’s second law

Consider the change in particle number within the region [x − δ/2, x + δ/2]
during an interval τ :

N(x, t+ τ)−N(x, τ) = J
(
x− δ

2 , t
)
τ − J

(
x+ δ

2 , t
)
τ.
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Dividing by τδ, we can write it in terms of the particle density n = N
δ

n(x, t+ τ)− n(x, t)

τ
=

J
(
x− δ

2 , t
)
− J

(
x+ δ

2 , t
)

δ
.

In the limit δ, τ → 0,

∂n

∂t
= −∂J

∂x
= D

∂2n

∂x2
. (Fick’s second law)

This is the (1D) diffusion equation, which describes how a cloud of particles
evolves in time.

5 A probabilistic approach

We can also derive the time evolution of a cloud of N0 particles from the prob-
ability states, P (x, t). The number of particles in the interval [x− δ/2, x+ δ/2]
is

N(x, t) = N0P (x, t) = N0p(x, t)δ,

where p(x, t) is the probability density function (pdf).
To find the equation describing the probability states P (x, t), we consider

the possible changes in density at position x:

P (x, t)︸ ︷︷ ︸
Probability at t + τ

=
1

2
P (x− δ, t)︸ ︷︷ ︸

Particles at x − δ move right

+
1

2
P (x+ δ, t)︸ ︷︷ ︸

Particles at x + δ move left

.

Dividing by δ and taking a Taylor expansion for τ, δ ≪ 1,

p(x, t) +
∂p

∂t
τ ≈ 1

2

[
p(x, t)− δ

∂p

∂x
+

1

2
δ2

∂2p

∂x2
+ p(x, t) + δ

∂p

∂x
+

1

2
δ2

∂2p

∂x2

]
,

p(x, t) +
∂p

∂t
τ ≈ p(x, t) +

1

2
δ2

∂2p

∂x2
,

∂p

∂t
≈ δ2

2τ

∂2p

∂x2
= D

∂2p

∂x2
.

Since n(x, t) = N0p(x, t), this recovers the diffusion equation.

Exercise 3: Repeat the previous derivations now for a biased random walk
in which P(∆i = δ) = q and P(∆i = −δ) = 1 − q. What happens to the first
derivatives in x?

Suggested Reading: For more information about how Random Walks are
used in biological modelling, a good textbook is Random Walks in Biology by
Howard C. Berg.
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6 Solving the Diffusion Equation

We have shown through two different arguments that the density of random
walkers in a one-dimensional line follows the Diffusion Equation

∂p

∂t
= D

∂2p

∂x2
.

We are interested in knowing the solution of this equation subject to the
initial condition n(x, 0) = n0(x) and limx→±∞ n(x, t) = 0.

6.1 Fourier method

The Fourier method to solve this equation relies on the fact that we can decom-
pose n(x, t) in planar waves

n(x, t) =
1

2π

∫ ∞

−∞
eikxn̂(k, t) dk.

The coefficients n̂(k, t) are found using the Fourier Transform,

n̂(k, t) =

∫ ∞

−∞
e−ikxn(x, t)dx.

We define n̂0(k) to be the Fourier Transform of n0(x).
Taking the Fourier Transform of the Diffusion Equation,∫ ∞

−∞
e−ikx ∂n

∂t
dx = D

∫ ∞

−∞
e−ikx ∂

2n

∂x2
dx,

gives
∂n̂

t
= (ik)2Dn̂ = −k2Dn̂.

This is a simple ODE with solution

n̂(k, t) = n̂0(k)e
−k2Dt.

Therefore, the solution of the Diffusion Equation is

n(x, t) =
1

2π

∫ ∞

−∞
n̂0(k)e

ikx−k2Dt dk. (2)

Note that the higher wave numbers are rapidly damped, emphasising the
smoothing property of diffusion.

Example: Consider the Gaussian initial distribution

n0(x) =
1√
2πσ2

e−
x2

2σ2 . (3)
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The Fourier Transform of the above distribution is

n̂0(k) =

∫ ∞

−∞

1√
2πσ2

e
−
(

x2

2σ2 +ikx
)
dx.

Completing the square,

n̂0(k) =

∫ ∞

−∞

1√
2πσ2

e−
(x+ikσ2)2

2σ2 e−
k2σ2

2 dx.

Now we need a bit of Complex Analysis. The Cauchy Formula states that, for
a function f(z) ∈ C, z ∈ C, ∮

f(z) dz = 0,

provided there are no poles in the interior of the integration path.
Introducing z = x+ ikσ2, dz = dx, the previous integral becomes

n̂0(k) =
e−

k2σ2

2

√
2πσ2

lim
R→∞

∫ R+ikσ2

−R+ikσ2

e−
z2

2σ2 dz (4)

Let’s keep R finite for the moment. We can then think of the integral as one
segment of a closed curve with rectangular shape:

0 =

∮
e−

z2

2σ2 dz

=

∫ R+ikσ2

−R+ikσ2

e−
z2

2σ2 dz +

∫ R

R+ikσ2

e−
z2

2σ2 dz +

∫ −R

R

e−
z2

2σ2 dz +

∫ −R+ikσ2

−R

e−
z2

2σ2 dz

In the limit R → ∞, the second as well as the last integral vanish due to the
exponential damping with large R, leading to

lim
R→∞

∫ R+ikσ2

−R+ikσ2

e−
z2

2σ2 dz = lim
R→∞

∫ R

−R

e−
z2

2σ2 dz .

Inserting this into Eq. (4), we obtain

n̂0(k) =
e−

k2σ2

2

√
2πσ2

∫ ∞

−∞
e−

x2

2σ2 dx.

This means that we can basically drop the imaginary part in the original integral.
Given the integral of a Guassian∫ ∞

−∞
e−x2

=
√
π,

so by making a change of variable y = x/
√
2σ2 we have that

n̂0(k) = e−
k2σ2

2 .
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This result is worth keeping in mind: The Fourier transform of a Gaussian is a
Gaussian.

To obtain the full solution of the diffusion equation in real space, we have
to insert n̂0(k) into Eq. (2),

n(x, t) =
1

2π

∫ ∞

−∞
eikx−Dk2t−k2σ2/2dk.

We can do a bit of rearranging to get

n(x, t) =
1

2π

∫ ∞

−∞
eikx−k2(Dt+σ2/2)dk .

As before we complete the square for the exponent,

k2
(
Dt+

σ2

2

)
−ikx =

(
Dt+

σ2

2

){[
k − ix

2(Dt+ σ2/2)

]2
+

x2

4 (Dt+ σ2/2)
2

}
,

so that the integral becomes

n(x, t) =
e
− x2

4(Dt+σ2/2)

2π

∫ ∞

−∞
e
−(Dt+σ2/2)

[
k− ix

2(Dt+σ2/2)

]2
dk.

This is essentially the same integral that we had before, so we drop the imaginary
part and change the integration variable, giving the result

n(x, t) =
e
− x2

4(Dt+σ2/2)√
4π(Dt+ σ2/2)

.

This is the solution of the diffusion equation starting from a Gaussian distribu-
tion at time t = 0.

Note:

• Introducing σ̃2 = 2(Dt + σ2/2), the solution is a Gaussian with a stan-
dard deviation σ̃, i.e. the width of the solution grows like

√
Dt in time.

Similarly, the amplitude decreases like 1√
Dt

.

• Let us substitute td = σ2/(2D). The solution then can be written as

n(x, t) =
e
− x2

4D(t+td)√
4πD(t+ td)

. (5)

Remember that in the limit td = σ2

2D → 0 the initial condition Eq. (3)
corresponds to a Dirac delta function. Thus an initially Gaussian distri-
bution of particles that is diffusing may be viewed as having originated
from a delta function a time td ago. Indeed, it can be shown that diffusion
will cause any form of particle distribution initially localised about zero
to eventually look like a Gaussian.
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6.2 Green’s function method

This method relies on another trick for representing the solution, which is some-
what more intuitive. Now, instead of representing n in a basis of plane wave
states, we will express it as a basis of states which are localised in position. This
is done by using the so-called Dirac delta function, denoted δ(x − x0). You
should think of this of a large spike of unit area that is centered exactly at the
position x0. The definition of δ is that given any function1 f(x),∫ ∞

−∞
f(x′) δ(x− x′)dx′ = f(x).

We can represent the initial distribution of particles n(x, 0) = n0(x) as a
superposition of δ-functions

n0(x) =

∫ ∞

−∞
n0(x

′) δ(x− x′) dx′.

This formula decomposes n0 into a continuous series of “spikes”. The idea is
to then understand how each spike individually evolves and then superimpose
the evolution of each spike to find the final density distribution. We define the
Green’s function G(x− x′, t) so that G(x− x′, 0) = δ(x− x′), and

n(x, t) =

∫ ∞

−∞
G(x− x′, t) n0(x

′) dx′.

Plugging this into the diffusion equation we see that∫ ∞

−∞
n0(x

′)
∂G(x− x′, t)

∂t
dx′ = D

∫ ∞

−∞
n0(x

′)
∂2G(x− x′, t)

∂x2
dx′.

Thus G(x−x′, t) obeys the diffusion equation and we have reduced the problem
to the mathematics of solving the diffusion equation for the localised initial
condition δ(x− x′).

This problem can be solved by using the Fourier decomposition of δ(x− x′)
and solving the equation in Fourier space, and then transforming back into real
space.

1Intuitively, one can obtain the Dirac δ-function from the normalized Gaussian (3) by
letting σ → 0. Derivatives of order n of the δ-function, denoted by δ(n), can be defined by
partial integration∫ ∞

−∞
f(x′) δ(n)(x− x′) dx′ = (−1)n

∫ ∞

−∞
f (n)(x′) δ(x− x′) dx′.

The Fourier transformation of the δ-function is given by

δ̂(k) =

∫ ∞

−∞
e−ikxδ(x) dx = 1.

Applying the inverse transformation yields a useful integral representation of the Dirac δ-
function

δ(x) =
1

2π

∫ ∞

−∞
eikxδ̂(k) dk =

1

2π

∫ ∞

−∞
eikx dk.
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7 Pattern Formation

In the first lecture, we studied diffusive systems as a limit of random walks,
deriving the diffusion equation, solving and obtaining insight into its properties.

In the second lecture, we will model a biological system with diffusion and
understand its effects on pattern formation. Before diving into the modelling
aspect, we need a short background on stability analysis.

7.1 (Linear) Stability analysis for PDEs

Consider a scalar density n(x, t) on the interval [0, L], governed by the Diffusion
Equation,

∂n

∂t
= D

∂2n

∂x2
,

with reflecting boundary conditions,

∂n

∂t
(0, t) =

∂n

∂t
(L, t) = 0.

Under these dynamics, the ‘total mass’ of the system is conserved, i.e.,

N(t) =

∫ L

0

n(x, t) dx ≡ N0,

and a spatially homogeneous stationary solution is given by

n0 = N0/L.

To evaluate its stability, we can consider wave-like perturbations,

n(x, t) = n0 + δn(x, t), δn(x, t) = ϵeσt−ikx.

Inserting this ansatz into the Diffusion Equation gives the dispersion relation

σ(k) = −Dk2 ≥ 0,

signaling that n0 is a stable solution, because all modes with |k| > 0 become
exponentially damped.

7.2 Reaction-diffusion (RD) systems

RD systems provide another generic way of modeling structure formation in
chemical and biological systems. The idea that RD processes could be respon-
sible for morphogenesis goes back to a 1952 paper by Alan Turing (see class
slides), and it seems fair to say that this paper is the most important one ever
written in mathematical biology.

RD system can represented in the form

∂tq(t,x) = D∇2q +R(q), (6)

where
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• q(t,x) as an n-dimensional vector field describing the concentrations of n
chemical substances, species etc.

• D is a diagonal n× n-diffusion matrix, and

• the n-dimensional vector R(q) accounts for all local reactions.

7.2.1 Two species in one space dimension

As a specific example, let us consider q(t,x) = (u(t, x), v(t, x)),D = diag(Du, Dv)
and R = (F (u, v), G(u, v)), then

ut = Duuxx + F (u, v) (7a)

vt = Dvvxx +G(u, v) (7b)

In general, (F,G) can be derived from the reaction/reproduction kinetics, and
conservation laws may impose restrictions on permissible functions (F,G). The
fixed points (u∗, v∗) of (7) are determined by the condition

R(u∗, v∗) =

(
F (u∗, v∗)
G(u∗, v∗)

)
= 0. (8)

Expanding (7) for small plane-wave perturbations(
u(t, x)
v(t, x)

)
=

(
u∗
v∗

)
+ ϵ(t, x) (9a)

with

ϵ = ϵ̂ eσt−ikx =

(
ϵ̂
η̂

)
eσt−ikx, (9b)

we find the linear equation

σϵ̂ = −
(
k2Du 0
0 k2Dv

)
ϵ̂+

(
F ∗
u F ∗

v

G∗
u G∗

v

)
ϵ̂ ≡ M ϵ̂, (10)

where

F ∗
u = ∂uF (u∗, v∗), F ∗

v = ∂vF (u∗, v∗), G∗
u = ∂uG(u∗, v∗), G∗

v = ∂vG(u∗, v∗).

Solving this eigenvalue equation for σ, we obtain

σ± =
1

2

{
−(Du +Dv)k

2 + (F ∗
u +G∗

v)±
√
4F ∗

vG
∗
u + [F ∗

u −G∗
v + (Dv −Du)k2]

2

}
.

In order to have an instability for some finite value k, at least one of the two
eigenvalues must have a positive real part. This criterion can be easily tested
for a given reaction kinetics (F,G). We still consider a popular example.
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7.2.2 Lotka-Volterra model

This model describes a simple predator-prey dynamics, defined by

F (u, v) = Au−Buv, (11a)

G(u, v) = −Cv + Euv (11b)

with positive rate parameters A,B,C,E > 0. The field u(t, x) measures the
concentration of prey and v(t, x) that of the predators. The model has two
fixed points

(u0, v0) = (0, 0), (u∗, v∗) = (C/E,A/B), (12)

with Jacobians (
Fu(u0, v0) Fv(u0, v0)
Gu(u0, v0) Gv(u0, v0)

)
=

(
A 0
0 −C

)
(13a)

and (
Fu(u∗, v∗) Fv(u∗, v∗)
Gu(u∗, v∗) Gv(u∗, v∗)

)
=

(
A− BC

E −A
C −C + AE

B

)
. (13b)

It is straightforward to verify that, for suitable choices of A,B,C,D, the model
exhibits a range of unstable k-modes.

8 Coding Exercises

The following repositories contain coding exercises focused on deepening the
understanding of the topics covered in these lecture notes. The questions are
open-ended, and students are free to work on the tasks at their own pace. To
run the code, open the Jupyter notebook locally or in Google Colab.

Random Walkers: https://github.com/philip-pearce/randomwalkers/
Pattern Formation: https://github.com/amsontag/pattern_formation/
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